1. Répéter en solo Carte

w/! mentale

Suite convergente Suite divergente
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» Certaines suites n"admettent pas de limite lorsque n tend
vers +%,

Etudier le comportement de (u,) quand n tend vers +=

Déterminer la limite d'une suite
avec les opérations

Etudier la convergence
de suites de référence

Si... » Soitunentier k= 1.
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*  forme indéterminée
** (v ) de signe constant a partir
d’un certain rang pour conclure.
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Comparer pour étudier la convergence d’une suite

e Soit N un entier naturel. Soient (u,) et (v,) deuxsuites telles que, pour tout n =N, u, <v,.
Si lim u, =+« alors lim v =+=.

R—+ % n—+%
Si lim v, =—= alors lim u =—o0.
H—+ = n—+*
oSi lim u,=¢€, limu, = € et apartird’uncertainrang, u, < v, ,alors € < €.
n—+% n—s 4w

e Théoréme des gendarmes :
si. limu, =€, lim w, =€ et, apartird'un certainrang, u

-+ n—o+®
* Si (u,) estune suite croissante qui converge vers ¢, alors, pour toutn € N, u, < €.

® Si (u,) estune suite décroissante qui converge vers ¢, alors, pour tout n €N, u_ = .

* Si (u,) estcroissante et majorée par M, alors (u,) converge et sa limite € est telle que € < M.

® Si (u,) estdécroissante et minorée par m, alors () converge et sa limite € est telle que € = m.

n

=v =w,,alors (v,) converge vers €.
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