LESSENTIEL

© D'aprés lalgorithme d'Euclide, le PGCD des entiers naturels a et b est égal au dernier reste non nul
lorsquon effectue les divisions euclidiennes successives. Cela permet de:

v/ déterminer le PGCD de deux entiers ;

v montrer que deux entiers sont premiers entre eux en vérifiant que leur PGCD vaut 1.

© Daprés lidentité de Bézout, pour tout couple (a 3 b) € (Z)?, il existe (u 3 v) € Z? tel que
au +bv =PGCD(a ; b). Cela permet de:

v montrer que deux entiers sont premiers entre eux ;

v déterminer si un entier est inversible modulo un entier naturel non nul;

v démontrer le théoréme de Gauss ;

v déterminer si une équation diophantienne de la forme ax+ by = ¢ admet une solution.

©) D'aprés le théoréme de Gauss, pour tous entiers relatifs non nuls a, b et ¢, si a divise be et si a et b sont
premiers entre eux, alors a divise c. Cela permet de:

v/ résoudre une equation diophantienne de la forme ax=by ;

v/ résoudre une congruence de laforme ax =0[n] lorsque a et n sont deux entiers naturels premiers
entre eux.

@ Daprés le corollaire du théoréme de Gauss, pour tous entiers relatifs non nuls a, b et ¢, si b et ¢ sont
premiers entre eux et divisent a, alors be divise a. Cela permetd’:
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